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INTRODUCTION

In a discussion of the instability of a circular cylindrical shell the
term ''short" is generally applied to a cylinder whose length is approxi-
mately equal to the radius. When a short cylindrical shell is subjected to
an axial load that produces instability, the effect of the boundary conditions
is no longer insignificant. In the analyses presently available, such as
References (1) and (2), the solution to the Donnell type of differential equation
for an orthotropic circular cylindrical shell is found for simply supported
edge conditions. Therefore, a definite need exists for the development of an
expression that will yield the buckling criteria in a form usable for designers
when a short orthotropic or stiffened cylindrical shell is subjected to a combi-
nation of a pressure and an axial load and has boundary conditions other than
simply supported.

In addition, for very thin circular cylindrical shell, with a radius
to thickness ratio greater than 200, the so-called small deflection or linear

theory does not yield satisfactory agreement with experimental results.
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Non-linear analyses based on an assumed deflection pattern, such as Refer-
ences (3), (4), and (5), indicate better agreement with test data; but such
analyses as now constituted are not applicable for design criteria. In this
paper a constant factor is included in a radial displacement expression for
the purpose of linearizing certain energy terms that were neglected in
Reference (2) so that their effect may be studied. Such an approach or simi-
lar one is needed in instability shell studies for as presently constituted the
the inclusion of non-linear terms in such studies results in such complex
mathematical procedures that their practical application is almost prohibitive.
The results of such attempted linearization as mentioned above will be pre-
sented in another paper.

In order to develop the most complete analysis possible based on
existing strain-displacement information, the investigation was begun by
using the best general theoretical analysis and modifying and limiting itwhen
needed as indicated by the mathematical difficulties encountered. The theo-
retical approach used is similar to the one used in Reference (2) wherein
orthotropic shell analysis is applied to a stiffened circular cylinder; however,
additional strain-displacement terms are included that will later make pos-
sible the linearization study mentioned above.

In the present paper a set of instability equilibrium equations, simi-
lar to those of Reference (2), are derived for an orthotropic circular cy-
lindrical shell by applying variational methods to the expression for thetotal
energy of the shell. From these equilibrium equations an eighth order differ-
ential equation of the Donnell type is obtained for a cylinder of uniform thick-
ness subjected to a pressure and a compressive axial force. This differ-
ential equation is solved for the case of simply supported edge conditions,
and a quadratic algebraic expression is developed that yields the buckling cri-
teria. This algebraic expression can be minimized quite readily for certain
parameters by the use of a digital computer for the purpose of establishing
design criteria. The Donnell type differential equation is also solved for the

case of clamped edge conditions, and a four-by-four determinant that yields



the buckling criteria is developed. Again it may be possible that design cri-
teria may be established by minimizing this determinant for certain para-

meters by using a digital computer.

STRESS-STRAIN RELATIONS
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Figure 1: Coordinate System and Displacements of
Circular Cylindrical Shell

The circular cylindrical shell geometry engployed, which is the
same as that of Reference (2), is shown in Figure (1) together with the coordi-
nate system used and the corresponding middle-surface displacements. In
terms of the shell middle-surface displacements, X , Vv , and w , the ex-
pressions for the buckling strains in the shell wall are the same as those
given in References (2) with some additional terms. The strain-displacement

relationships used are written as follows.
Eyx = U+ = w; - & W, 5x
Ess™ Vs~ W/R+ ‘i(\w/,s + VR) - Z(wsS: +K W/Rl> (1)
©ys = NVt W,s HWs + RY W, x ~ (B X3 Wixs “Vix/R- U\“/RS}

where K is a constant, R is the radius of the cylinder; Cyx , €ss , and
©xs , are the axial, circumferential, and shear strains, respectively; and
a comma indicates differentiation with respect to the succeeding variable.

For a homogeneous orthotropic material, the stress-strain re-

lations in generalized plane stress can be written as follows.
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GXX: E,_ (:“ * A >)\\.- .x /(‘ L).:)t“\)*‘oj\
T B G Ve Cod/ = Uy V) (2)
CJ\'XS = K.;"’ \;XS

In the preceding equations Qxx , Csy , and Gy Uy , are the axial, circum-
ferential, and shear stresses, respectively; { , and & ; are the values of the
moduli of elasticity averaged over the thickness in the axial and circum-
ferential directions, respectively, G is the average shear modulus, and
—1)4 and ‘\)xs are Poisson's ratios.

For convenience in later calculations, the following constants and

notations, similar to those given in Reference (2), are introduced.

o(\ = (v:. ¢ h )/( |~ W)XS—‘)SXS D] _'(L“:/ l’)a/'\"&)%’ - —1)5,‘,_]))(3‘)
B YU V) D= (B A1~ VucDsy)
- - Gh T.= Ghija (3)

~ <é?, Vex \’3)/<" ‘)ax‘);s) D, (E’ Vix Lw.;’;rz /0’ Zex 7/XS>
= (B )= Ve by = (& 06 WA/ (1= Vabes)

where h is the thickness of the shell. The following stress resultants are

also defined.

- Wa '\/i; - h‘/_’f
N\& v <" T b2 Ny ™ g_?);:’?:’ d= NXS ) S_g:ﬁ b (4)

Based on Maxwell's reciprocal theorem, the following relationship

must hold between the elastic constants.
E';; ~J)g:‘. = E’\ \/)m)( (5)

The two expressions for o and Ty in Equations (3) are the result of the

above relationship.

STRAIN ENERGY AND TOTAL ENERGY EXPRESSION
The instability differential equations of equilibrium will be derived
using the same procedure as given in Reference (2). For an elastic system,

a criterion of buckling is that the variation of the change in the energy of the

4



system due to buckling, with respect to the displacements, must be zero.

Described mathematically, this criterion becomes
SW+v= o (6)

whereUl is the change in the strain energy of the shell and V/ is the change
in the potential energy of the external forces during the buckling process.
If initial bending stresses are neglected

u '::.jL'G;y. Q,.)g'*‘ 6:-;\_ Q-".} + G-:i.b Q—!S + é(‘c-:ﬂ.ex"* GS.;QbS + 6“5 Qﬁ s)J A\L (7)

—

In the preceding expression O_Tx , Oz , and G:xs are the membrane stresses
existing in the shell in the compressed but unbuckled state; Ty , J3s , and '
G« are the stresses superimposed during the buckling process, and Vg is
the volume of the shell wall.

The strain energy of the shell can be computed in terms of the buckling
strains and the pre-buckling stresses by substituting Equation (2) into Equation

(8) with the following result.
_ - = = _ i 2
™w= agvga(o-w Cn + G Ts + Gy st) + Ex Oy /(’ = s -Os x)
+ By @5t /= VegVsn) + 2Ex Vsx@xux Css 19V 5050+ 26 €50 ] 4V (8)

If P designates a radial pressure, then Nxs‘: - PR for the case of
an external pressure; and Nu:,t FR for an internal pressure. The theore-
tical development will be continued for KL_;S“- PV\ , and for this case the
change in the potential energy of the external forces during buckling is given

by the following expression.
V- ‘(As; PROVR =V 5) + Ny tyx + Ny (Ve + WY1 d As (9)

where A, is the middle surface area of the shell wall.

The total energy of an orthotropic circular cylindrical shell can then
be obtained in terms of the displacements and their derivatives by substi-
tuting Equations (1) into Equation (8) and adding the result to Equation (9).
After integrating over the shell thickness and retaining only second order

terms, the following expression for the total energy is obtained.



U+V = g {N,x W+ Bval+ N[ Uyst Vet VoW +vn, /R ]
PR[\’;s - W/R, ,,g({\{w S 1AW g /R + Vl/[&)ﬂ dAs
#v/)) S0/0- Yt [EA ) #6253 385 s Wi o8& W
+aE; Dex (Vashyx = Uy WY+ G/ + s +2V 51,5 ]JdAs
34”{[‘/( 1= sz’\),ﬁ.][t,l I FESW S 4 2E KWW Wss /R*
+ KWIRY + 2T W oV, 58 F3Ex Uy KW (o W R{k
KOALIR 3 /R4 4490y /R b -2 e S
=9, LPROVRV,S) + B+ lys (V0 02) dAs

EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS
RESULTING FROM THE APPLICATION OF VARIATIONAL PROCEDURES

(10)

From Equation (10) the following expression is obtained for the vari-
ation in the total energy of the shell after making the substitutions indicated

by Equations (3).
Swav) ~S AV DV § Wi - PRIV +W/R) S wyz + (Wis i+ VR &V ]

+ NkSKw‘si-V/R)SW swiy Sw (+ Wi /) Sv‘!} dAs
+§, syt o6 (s =v/R) Sy T (i gt vy)] o v
(Rt U I SVt [otalvis= W) + e )] S
+ Lo (w/R - Vis/R) ~kee W) ] Swi dAg
+ A0t By (s = KR S+ Da[24 Yy /R = Wrs/R] S
+ [0 (W5 WW/R) + Dy W, g} S W s+ [Da(se /8 + WA +Dy Koo/ Sw
[Pl /AR Wk = vy A Sy Da ek -0} dAS (11)

After using JA;_ dxds . applying a well-known identity from the
calculus of variations, and integrating Equation (11) by parts between the

proper limits, the following expression is obtained for the variation in the

total energy.



L z‘[
s4v) j) {(“(v(W;/R «f'w\) L A, xx —olg(U,s5 +Vxs) +D3 (Wxs‘//?ﬂ/zs/ll? M«,ss/??")]fu

FLNks wa /17 (W 5 # VIR £ oLz (55 JR ~Viss) ~Aw By xS ~ols (Vi | ) 5p)

+ Ds (sm (20" =V xx 287 - W ans /R)IAV

+Lp( ks ss FVs) = Fw W = Nz (20 44, /R) A La(w/F? =V, L /R)

L on /B + Do xxxa 4 Dz (a5ssss 12405 ss/R? + KW /R )

'I'ZD.,«(W'xxSS +RW, xx [R*) +D3 (2 Wixasst V, xxs /K - Wxxs//\’)jgw}ﬁq(; ({2)

R{G(:wx +oly(V;s W‘//z)] Su 4 (P(s(‘lf,,‘-rm s) 4 D3 (Vx /28" 1 Wxs/K - ,:/ZK")l fv
¥ DRty + Nxs(Wz:*V'/K) Do Wk #Dz (0, 55/R ~Vys /R -2 W xss )
-04 (orssx + KN'M//?‘] Sor 4D/t v x + Dy (W) ss H(N‘/k")] JN'x} os ‘
t 5 {&;w,s*n)w;(u s/ B - Wrxs/R —v,/zk*)j HXa (Vos =~wfR) 44, u.,jﬂrzw
LTy, 7 ﬁ(ws + V7R )-Ds (Wisss 55/ R )05 s R Vo /R 2uns)
< Dy Mﬁxij Sw +ﬁ>z W ss + mv'/p‘ nyN'xx Sws j /x
f[D,(z,r“,v;,\/[’ Mm//’\’)] _fntg‘u‘

The change in the total energy of a system must vanish for any of
the arbitrary virtual displacements §u , Sy and ( y~ when the system is
in equilibrium. Therefore the integrands in the surface integral of Equation
(12) that are multiplied by S, v, and s w, respectively, must vanish;

and the following equations of equilibrium are obtained from this requirement.
L Wan + (otizt Dsf2p* 4,55 1(Aq 1oy - D3/2R%) Vins ~ sy W, [ ’D;w.xss/,?_(}:;)
PR (P -2 /R)Ws - Nxs gy f0 4 (s 1 D3 LRV Aol Yy g
+ (%4 $o3-Dg/2R%) M 5x t Dz} xxs /R = O (14)
(o /R*HK>Def/BIW + (2 D5 K JRP-Wox ) Wi, + (PR 421 DafBY) Wiss
“2Nxs Wixs # Dy Wimea + DaW 5555+ (2D3£2 Dy ) Woess oy, /R

“NxsVix /R4 (p ~f/P)Vis # D3V axs/R -Ds Woyss /R =0 (1'_5)
The following natural boundary conditions are obtained as a result of the re-
quirement that the change in the total energy of the system represented by
the line integrals of Equation (12) must vanish for any of the virtual dis-

placements or their derivatives.
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oalts I ¥ DRI W ST g )] v Sw& T e
“—(-»,U,n ‘-‘\,5) 4 b-,_( Vi /a4 W R~ wy /;4@8 - o ~ g\,] =Y
o
kR
3 (\/,-—vJ/R) + o«ﬂ*gl o ,v]: - O
Nix Wk N*:,(\’J\S* R) - Dwhyyy = q(w-.':‘;/ 1 Kw,x/K13
'+D3(\A)§ /K-V)xs/R - Q‘W;XSB)_JO -0 o gw-]o
N‘S 'M))\ - ‘PR(N,:* V/K) 'ba(““s‘ds +Lw|5 /Rl) -_— Dq ) RXS
R 'm(L

4+ b3 (W /R - )m/f{ ~QW,X$3} = Q or Sw]
D3(2W s + Vi/R ~ Uy /Rﬂ ]ﬂﬁ = 0 or év:J ]MR
D, wW,xx +Dq(\'~’,ss t Kw /R)l oF Sv’xj =0

-DQ(W)S% + KW/‘R‘) + Dy ‘fJ> - ‘SNK » or gw‘s TﬂR -0
(o}

DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION

In order to derive a Donnell type of differential equation, Equations

(13), (14), and (15) are written in the following manner.
V)Y‘:: G‘( \k)‘;. + C\au|5$+ ("3 W)X 4‘“5"“’,%53 (133')
Uyke S baV + b Vv beV tbowix +b Wy +be Wixs (14a)

CiMix + o Vi 4 GVg 40y Ui+ Cavjays =~ Cow = Srw g

~%WVss T GWie — D Wiy T Dawysst =~ 2D+ Dy) Wiysg T O (15a)
where

do w4y~ D3/R2 ], = - /d ay= —-(;&Jfks?‘;u.,)_,(ne?"A)
az™ = /Rd ae= Ds/Rd b.=—p/Rd

b= ~(Ree, R+ D) AR bas —%/d b= Ng/R4

b= (sta-PRURY Ls= -Dy/rd Cr /R, (16)



Ga = Nys/R Cy = (oa- VKVR G = DR
Ce = =D3s /M c, = (ealk+ Kﬁb#‘)/w cq = (aep, ‘KQE/A/R}‘
S ~(PR+3D KR Cq= = AN
A linear differential operator is defined as follows:
- ab =+ o » li, 4 b ]
Q7 %beyy J’i‘%;;'*“\b*bﬂ +(G|\>a+%.\°| ‘Dmsﬁ + QAER\%{; (17)

By successive differentiation and combination Equations (13a) and

(142) can be brought into the following form.
- Q\k -~ GBBO“J)X + G3B| W-, XXX + (QS‘LQ-" (\3\)k+\bq)\i\’)ys + bs\)"q\s (18)

"\'(G?E,-\.Ls) NN‘*SY -*' O\Sha‘\f\,) XS’S§

—av = O by Wiy +(Gbyt a3)Woxys t Gabawiss T Calog Wiess

(19)
+ (6a b+t Qs) Witksss t Gib e W, ywrs
Operating on Equation (15a) with & results in the succeeding
expression,
— QU U+t T3V 5 + Oy Wypgs + CsVyigs ) + QIS+ < W)y (15b)

+C?N\°a5+ Q:\ N) 1 &3 t+ D,W, o 1 D;w\gsg_s *1< D}* D‘Dw) \KSS] =0
_ All the w and v terms in Equation (15b), by utilizing Equations
(18) and (19), can be eliminated with the result that the following eight order

Donnell-type differential equation in w alone is obtained.
(& ke Ds) Wsssss | (GyhuCy* o buDat aaky Dy~ D2 424, b2 D4+242b203’)\ﬂ4“555”5
4l Cy the ¢y 4ashCotages + glp D+ 0,5 By +86, L, Dyt 36, by Dy
ERANON o +ab, Dy -AD;—-2Dy) Moy sess 4 (~.bs Cobahy D,
+c b, D, *D,-\,’&a.\).b;j 2a, b, D4>V‘6xuxxxss + (@, b/ D) Wyxxxxxxa
+ Aylo, Ty + ‘chk\ Wienass +(Gsby Cq) Wgsssss T Q}s 26+ 6 53
a5 Gy + by Ty FOgh oy 4 aabsCyt GabaCs 4G b &g FabaCyraghg,
—Co +Q, bbbz+aa’vobb~5 4+ af,b.,DQ Ng‘/\?\ss‘;}s -+

9



+Q“u\>g Cata5C  4by Gyt Qs byl balqtosh (6™ Ca)w v
+agh, ¢, Tog Q) +6, by vl ¢ o s rang +C£;\°?3 Cy 463k | =G

‘1'(‘11"1&9 +a bebl '\‘ZC‘\)D;DS*ZQ bc‘D W -+ ({\\3‘<>2 +((a\i>‘~\-~-'
z \ 4 ' DS

) ¥RKYSE
+6, 5, < 4) Wi s -}({\“B(C7 +q,\3nb\3lﬂ/”-,”” +Q\ by S +65%,C,
4ol Cs) Wons +laab & degbye, 4@ w0+ (5 bee

AT O TR N P, Y SRR Y AL TSP WY S A T X4 X
+q;\oC(‘,“C(o+ Qboly +G\3C§>"‘])yhs +<b < +(*-bq Q*q 3
¥ abs C3 4 G, chw’“‘s r(@&be t woyly Fab ey

+ %o (‘l.) Wi T Q’-\\3°C6> A\\)sﬁs "\'%'S&MC\ to.q, C% ™ =0

The substitution of Equations (3) into Equation (20) results in the
following differential equation in which the constant coefficients are expressed
in terms of the extensional and shearing stiffnesses <, , =¥y , °(3 , and oy >

and the bending and twist rigidities D, , D, , Dy , and D, .

$ (R o Y da(RW o )+ 35 (R W pesss)

F IRV e ) 3 W) + (et PR (R W cxnsns)

‘*(Nxs Rde (R W,y (ssse) +(dg+ Kot pRI, = NaR L) RS W, ussss

‘* @xs Rz X R Wy assn) + (¥ et PR N“RA\J\R x“x:sy

(Ve R L R W, ) + LA+ pR e = Nax Ry X B W, )

-&(K daat pR °‘13+ K:]:R JMX‘( ,g;sg +(N,SRJ;5‘* Nu?‘iai&XRa W, hgssB
(e + g + PR Qzq+ KPR d30 ~Nyy PRyt Nys RR‘JR\X Y wm\gs)
+(Nye R‘;zg\;\vé Whnts) gy TRz 4 KR d 5~ Nig ?Qséﬂ +Nyg R 3,5\‘l xm)

e X Ry . a
(PR d3q KRR d4o WK W,cs) +(pRdy + K P‘%Au\(\? w,“) =0 (2D
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where
d, = ey DR+ (o2 DaDR)aR)
dy TREG xa Dot Aa=y Dy 4 S~a=a Dy ) (DI Dy)/R
Ja ™ ey + 3% DyRH oD, R+ 3 DaR -0 D R-4ove R
- 24 DyR-de3 Dy + (s DIDs YA + &/ DaDY)AR) H <2 Dy Dy ) R
+(‘D~ D3y bq)/ R
dy T ¥eeD R+ DR+ ey DR — oy D, R-MB«\D.R-\—(MD;D.\\/K
HAx3DDLY/R +s( DD)V/R
ds7 ~yDR+ (=D D3V (sR)
dg = Ry Dy R + (e DsDs VR
d7 = oo+ Dyt kada)/a + (DD ARY) 22)
3? = ~(2g=a R 4+ =2 Dy)
(w‘xgbs)i{ + (Dwﬂ,b ‘D33/R
A o = Do o6 DAR 2oy DR + 2wty Dy K-(aw DR+ (3=sDD)R
“+ (°<-ﬂ> DO/R
d = s R~ oy R - amzoy R4 <Dy — « 4Dy i 2Dy + (D2 DY R
Joo R4 aDy)
diy T 4~y R - Dy R s 2o &
diy = Fxfg Dy - 9 oGo ByR - 2 YG DR
dis = P DR +3%7; Da Ro— 34 DR ~4=3 4 Dy R

+( DaDy)/R +HE DD/ R Gy D2R)/ R
di = =G D, 4 (D5}

=N
Jn -~ of, on R~ eny Kl*‘lx;’fq R +206 D3 4 ory Dy

11



da= ®Ds deien K dg = 2o DR DIDYR dae” =4 D,

dy= =R + (= Dy)/A daa™ a3 DaR+ (% 0aD1) /3R

daz = D065 R + oDy Qlaq = WDt (DODQ/T&

die = ~Rope R~ Dy die = QxgR ~AR ¥ 'Da/R«

A.qt Qe =3 D3 K

dag = e DaR=4D, 2%y DaR 6 DaDY/R ¥y DuDa)/ R

dag T Reoa R -ea R -3 - AD3  dao = Aty Dy 12X Dy +OsDYR?
dg = ~6R-DabR)  dsa= 424ps) AR
diy= 2 R 42 R 303 R* - =D

dyg = ey R - RS - (=003 /2 - (=dDsR) /4

Agt o, =(3D;K+(°('Daﬁg/&]2 43(. = A=, Dy 33-, = =, Jgf ->n R
dig = =6 R+ (cady/a J,o = aDat (DDA

dy = =R diy = — AT R v = Da.

SOLUTION OF THE DONNELL TYPE OF DIFFERENTIAL EQUATION FOR
A LLONG CYLINDER

The assumption that the radial buckling displacement w has the

following form results in a solution of Equation (21).

w < A[A,;,\ (=N X/R) cna (s/R) + m(ﬂm\ "/K\M ("‘S/Kgl (23)

In the above equation A is a constant and the dimensionless parameter,
N~ TR/ ., is introduced. The above expression does not satisfy the
boundary conditions for either a simply supported or a clamped edge shell;
therefore, the following derivation should only be used on a long cylindrical
shell in which the boundary condition effects are negligible.

The substitution of Equation (23) into Equation (21) is a solution of Ny

the stability equation provided a certain relation is satisfied. This relation-

12



ship results in the following algebraic equation which is the eigenvalue

equation of the stability differential equation.
N+ N¥m*nde + A"mtn*ds 10 me nidy + A Cm¥ds
-n*(kd, +prids)- Amn3 (N s®)dyg
-Nmn* (dg +£ o tp B3~ R Rdn) =~ N3m® n3(#s R)dl 12
“Attn*(di 4 Kd,s 1P A Ny Rdi2)-ASmSn (Nys B) dig
= Nem*(Kdig 4P R?d20 - Nx Rzt ) 40 t7dar 18 d23 4 kp R¥chs )
+Amn3 (WsxR)(das +pR%d:c) (24)
+ 8 r*n*(der +Kidap +pP dag + K phdse ~PWix Rodn +Wys F2d3)
+4°m%n (Nxs ®) dz3
+AtM¥(dsy 4655 1 KPRy —plan B3y + Wis™ K73 £)

-n(pe*)dszq # K ¥uo) = 0 MHpRY(dy + £*din) =0
In the preceding equation m and n are integers whose values govern the
buckled mode,. )
The following terms are defined in order to utilize Equation (24) for
design when a torque T and an axial compressive force P are applied to

an orthotropic cylindrical shell in addition to a pressure

g = B/mr* 7 =T /TR (25)

K. "'-P/% /(z: 7./?- (26)
Since .

P=-2TR Wx and T = 2R, (27)
Then

Moy = - Gk/2 and  Nes =g R =k gR/2 (28)
The substitution of Equations (26) and (28) into Equation (24) results

in the following quadratic expression in terms of the "axial pressure"

13



Rffb(kﬂ/ﬁ dK. Ko dew 1162 dus )+ /51}(0/% tk.der + /4 c/«[)-/- (/99 =) (29)

where

-

des = (A*mntdze + A¥m *sz)/z
duv = (AMn3dze) /2
dus s (A*mn*d3s 4 0*m? dsg) /4
due = ~(A*min?diy + A mentdin - /‘bm‘d"-/)/z
der = -(n°ds + 32m*ntd, +4 "m"n‘c//L\ FAmCdzo -ntdz3 (30)
-0*mintdza 4 n'd3g +4*mdy,)
Rt AN pntdse 1 ATmrdz)= (0w X d )
deg = - (AmrSds + °m*n3dis + A5mSnd,p 4 Amnides + ’)’Ms'\c/a&)/z_
J;-. =(d, + A'rntd, (A*mtntds 4 Aomlntdy +ATMFd s
-atmntde - AtMEnidie b Atmintdan +ATMTd3y)

'Kz(n*clu + /\‘m‘n’-c/” +Atm? (/35)
wkefmedy + X¥em*n?d ), + A¥m#ntdis + A\em&d q )

In Equation (29) the buckled mode is described by the integer values
of m and n . Since the lowest critical load is desired, the values used in
this equation must be chosen so as to minimize 4 in order to find its
smallest positive value that will satisfy Equation (29). This is equivalent
to minimizing the energy. The values of » and n for which # will be a
minimum in the past have been obtained by the following methods. .

1. A value for m was chosen based on experimental evidence and,
assuming n continuous, n was mathematically minimized _
with respect to ¢ . Or a value of » was chosen and M formal-

- ly minimized.

2. A trial and error procedure was used to determine the values of
™M and n .
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3. Graphical methods were used.

For the above methods to insure accurate results, in most cases the
labor involved is tremendous; however, the use of a digital computer reduces
this time to only a few minutes. Once a computer program has been written
that determines the minimum positive values of % for the parameters K ,

K: , and f,, this program can readily be adapted for use in developing
design data. No interaction relationships or equations are needed with such

a program.

SOLUTION OF THE DONNELL TYPE OF DIFFERENTIAL EQUATION FOR
A SIMPLY SUPPORTED CYLINDRICAL SHELL

The assumption that the radial buckling displacement w~ has the

following form also results in a solution of Equation (21) when A~xs is zero.
W =ALen (MAX/R) tre(ns/R ) (31)

The above expression satisfies the boundary conditions on the w~ displacement
for a simply supported cylindrical shell. The substitution of EqUafion (31)

into Equation (21) is a solution of the stability equation provided again that

a certain relationship is satisfied. After considerable mathematical manipu-
lation this relationship results in the following second degree algebraic

equation which is the eigenvalue equation of the stability differential equation.

R*g.‘(k,o/.,;) 1R*% (dy +Kidiy ) +dos =0 (32)

It is easily seen that the above equation can be derived from Equation (29) by
setting Kz equal to zero. Thus any procedure that minimizes 3' from
Equation (29) can also be applied to the case of a simply supported cylindri-
cal shell that is subjected to an axial compressive force £ combined with

a radial pressure P

SOLUTION OF THE DONNELL TYPE OF DIFFERENTIAL EQUATION FOR
A CYLINDER WITH CLAMPED EDGES

For this particular case HNyxsis again assumed to be zve'ro and the

following substitution is made in Equation (21).

15



W=F6 where F=F(x) oand G = G (S) (33)

Also in the following development superscripts are used to denote the order

of the derivative. For example: £ = -g—x'é

Using the above substitution and notation Equation (21)_ can be written as

follows.

4.6/8) 1 s (F/ENET/G)+ AstF™ /NG E )
A (FRE)E6) tAs (FBIF) A (E ) + A (FH)(GVE)
4 A (FP/E)G™ (G )4 Aq(FPe ) + Mis (BF /6 ) 44, (FYE)(&/E)
A (F%e) + A5 (B6) + Au (FYr) =0 (34)
where
A,=d /R A =de /R
Az = d3 /R Ay =de /R
As =ds/r Ao =(Kde + K, gR%, )R
Aq =(dg +kdso thig Pd +fﬁ'du/z )/k"
P = (ds #K dis 40§ Relis ¢ 3 ROnf2)/ 7
Ag=(Kdia thy§ Rdvo +4 Rz /2 )/
o = (En 4 kig ked2s +k/<.7-k‘</u)/e"
Au (daq +£4s 1§ Rty 4 £K, $ B30 + ;k"'o/;,/y e’
A <(ds4 + k3dss +eK 1gKdsq +;P"dg,/2 )/ RS
A = (d3a + ket 5 £%/k7)
Ave =(du K0 N o2 R/ 87)

Equation (34) can be written as follows:

Fit 6, +FEG/F + FEGs/r +FZ6u [F =0 (36)

16



- where

= A Y A FF s Ay YOF 44 F 0% (57)
G~ AGTE +A SVE 14872 + A, % (38)
Ga = ArCT2+ MGG A, GG (39)
G.=A:GTE * A GTB (40)

ACYE (41)

After repeated differentiation and considerable algebraic manipulation it can

be shown that

G, - % (42)
G.= Ba (43)»
Ge= B, (44)
Gy = By (45)

where B, , By, bs , and Bq ,_are constants.
Equations (38), (39), (40) and (41) can also be written in the follow~
ing manner using Equations (42), (43), (44) and (45).

Ve = Bu/a, (46)
GG ~ By/As -(/\qu)/(A A¢) (47)
EYGE - Bofay r(fAs B (s e ahBa, - B A (49)

G TG = BU/A +EANRYaag) +(Ac.M M, A;Aa) NN
- Q&a A A Bu)/(A.AaAiA‘D - (49)

Since G is a function of -the variable that represents the circum-
ferent1a1 direction, it must be a periodic function.- Therefore, the solution
of Equations (46) (47) (48) and (49) is given by trigonometric functions.
As a result the following values for the constants B, ., By , Ba , and B,+ ,

are obtained.

17



LW A S WA A = /RE (50)

s, = W As e wn? f\:/}{‘ ~ Ay /\f (51)
By = A/ - N A /Rk (52)
Ty~ AN/ RS | (53)

The substitution of Equations (37), (42), (43), (44), (45), (50), (51),
(52), and (53), into Equation (36) results in the following differential equation,

FT LR T e 3T 4R, V4 ReF C O (54)
where

Es - (A = A /(As RY) (55)

B~ (An kY ~n AR+ A7) /(5 ) (56)

By = (AgkE - Ay R4 R A;vﬂ/ (As-(i’) (57)

B, = (~r AR+ An R - AR 4 A) (AsEE) (58)

(P 4B + R 4 B (D) 4B = © (59)

When the quantities K} and (15 and positive integer values of n\ are
chosen in such a manner that two roots of the preceding quartic equation are
real and negative, then a solution of Equation (54) can be written in: the

following manner.

- ‘59 PN R+ 13 0« X+ B” ek + B ¢®™=0X (60)
where fzq » B ’B\I , and 3,3 , are constants and four roots of Equation (59)
are written in the form (= +{r, and = &% {ra .

If Equation (60) is used to satisfy the following clamped edge geo-
metric boundary conditions, then the natural boundary conditions given by

Equations (16) may not be satisfied.
I .
Joy= (L) = ¥y = F7(L) =0 (61)

The application of the preceding boundary conditions to Equation (60) results
in the following linear homogeneous algebraic equations in terms of the con#

stants given in Equation (60).

18



Bo t B =

B.Yi tBur =0 (62)
Baginrit + Bioerir Lt Bu ematt Balon ¥l =0 ”
Bari e (L-BuTiowntitt8ititanl~Buliom il =0

For a non-trivial solution of Equations (62) to exist, the determi-

nant of the coefficients of Bq , 8,0 ,B, , and B2, must be zero or
o / 0 /
+i e [ > =0
. _ (63)
T L e L ooy L ter Rl
h i Mrr. L - fuﬂﬁ‘whl- #& M‘?L L - G—M ri L

From the preceding expression the following eigenvalue equation of the stab-
ility differential equation is obtained,
(FE W om il g L)t20n (L Fl Cone-1) 20 (64)

In order to determine the buckling load for a clamped edge circular
cylindrical shell subjected to a combination of a hydrostatic pressure and an
axial compressive load, by use of the preceding analysis, a digital computer
program needs to the written that established sets of values for K+ and &
and positive integer values of M which satisfy Equations (59) and (64) and
yield two negative values for r* in Equation (59). The minimum positive
value of 7' that satisfies these conditions determines the critical buckling
load.

Calculations need to be performed for comparison with experimental
results in order to establish the validity of the preceding analysis. If the
preceding analysis does not yield accurate comparison with experiments, then
a general solution of Equation (54) needs to be found that satisfies the geo-
metric boundary conditions given by Equations (61) and the natural boundary

conditions given by Equations (16).
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NOTATION

a.,b//C: /d'/ A:/E:, éte .

As
Dl,Dl/DJ/D"

RS CMK}‘K ss,Cxs

E,,ts

F

o

Pay

Ki

Kz

Constants that are functions of the exten-
sional and shear stiffnesses, the bending
and twist rigidities, the applied pressure,
the axial load, and the applied torque

Area of the middle surface of the shell

Bending and twist rigidities of an elemen-
tal area of an orthotropic circular cylin-
drical shell

A xial, eircumferential and shearing strain

Moduli of elasticity for orthotropic circu-
lar cylindrical shell

Function of the axial coordinate derived
from the radial displacement

Shear modulus for orthotropic circular
cylindrical shell

Function of the circumferential coordinate
derived from the radial displacement

Wall thickness of the shell

Parameter introduced for the purpose of
later studying the effect of previously
neglected higher order energy terms.
For the present paper

Ratio of the radial pressure to an axial
load function

Ratio of a torque function to an axial load
function

Length of the shell

Integer that indicates buckled mode in the
axial direction

Integer that indicates buckled mode in the
circumferential direction

Axial, circumferential and shear stress
resultants per unit length

Radial or hydrostatic pressure
Axial load

20



'r, r'[rl—

‘A, V,W’

V)
V

Vs
dI, dt, d3/°(‘f

Nxs, Y sx

Tx, T, O35 , T35, Txs , T s

REFERENCES
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